# bot/recommender.py import openai import os from dotenv import load_dotenv from typing import List, Dict, Literal from library_cache import LibraryCache from config import OPENAI_API_KEY, OPENAI_MODEL load_dotenv() openai.api_key = OPENAI_API_KEY MediaType = Literal["movie", "show"] class Recommender: def __init__(self): self.cache = LibraryCache() def recommend(self, watched_titles: List[str], media_type: MediaType = "movie", max_recs: int = 5) -> Dict[str, List[str]]: if not watched_titles: raise ValueError("No watched titles provided.") prompt = self.build_prompt(watched_titles, media_type, max_recs) response = self.query_openai(prompt) print("🧠 Prompt:", prompt) print("📥 Raw response:", response) all_titles = self.parse_titles(response) print("📦 Parsed titles:", all_titles) available = [title for title in all_titles if self.cache.search(title, media_type)] requestable = [title for title in all_titles if title not in available] return { "available": available, "requestable": requestable } def build_prompt(self, watched: List[str], media_type: str, max_recs: int) -> str: type_text = "movies" if media_type == "movie" else "TV shows" # You could optionally summarize genres here genre_summary = self.extract_common_genres(watched, media_type) return ( f"A user has watched the following {type_text}: {', '.join(watched[:20])}. " f"These shows are mostly {genre_summary}. " f"Recommend {max_recs} similar {type_text} based on theme and tone. " f"Return only a plain comma-separated list of titles — no numbers, no explanations." ) def extract_common_genres(self, watched: List[str], media_type: str) -> str: genre_counts = {} for item in self.cache.data: if item["title"] in watched and item["type"] == media_type: for genre in item.get("genres", []): genre_counts[genre] = genre_counts.get(genre, 0) + 1 sorted_genres = sorted(genre_counts.items(), key=lambda x: x[1], reverse=True) top_genres = [g for g, _ in sorted_genres[:3]] return ", ".join(top_genres) if top_genres else "varied genres" def query_openai(self, prompt: str) -> str: try: response = openai.ChatCompletion.create( model=OPENAI_MODEL, messages=[ {"role": "system", "content": "You're a helpful and precise media recommender."}, {"role": "user", "content": prompt} ], temperature=0.4, max_tokens=150 ) return response.choices[0].message.content except Exception as e: print("⚠️ OpenAI API error:", e) return "" def parse_titles(self, response: str) -> List[str]: lines = response.replace("\n", ",").split(",") cleaned = [] for item in lines: item = item.strip() item = item.lstrip("-•*0123456789. ").strip() if item: cleaned.append(item) return cleaned